LINEAR ALGEBRA HOMEWORK

JULY 28, 2023

Let F be a field and $\mathscr V$ be an F-space. A basis of $\mathscr V$ is a map $v:\mathscr I\to\mathscr V$ satisfying:

(1) It is independent, *i.e.*, for any $\lambda : \mathscr{I} \to F$ such that $\lambda(i) = 0$ except for finitely many $i \in \mathscr{I}$,

$$\sum_{i \in \mathscr{I}} \lambda(i) v(i) = 0 \Rightarrow \lambda = 0;$$

(2)

$$\mathcal{V} = \sum_{i \in \mathscr{I}} Fv(i)$$

$$:= \left\{ \sum_{i \in \mathscr{I}} \lambda(i)v(i) \mid \lambda : \mathscr{I} \to F \text{ zero almost everywhere} \right\}.$$

Exercise 1. Let S be a set. **Prove** that $(F^S, +, \cdot, 0_{F^S})$ defined in today's lecture obeys V1-V8.

Definition 1. Let $(F^S)'$ be the subset of F^S consisting of all maps $S \to F$ which are zero almost everywhere.

Exercise 2. Take $\mathscr{I} = S$. Difine

$$v: S \longrightarrow (F^S)'$$

$$s \longmapsto \begin{pmatrix} e_s: S \to F \\ t \mapsto \begin{cases} 0 & \text{if } t \neq s \\ 1 & \text{if } t = s \end{cases}$$

Prove that v defines a basis of $(F^S)'$.